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Geomagnetic palaeointensities
and astrochronological ages for the

Matuyama{Brunhes boundary and the
boundaries of the Jaramillo Subchron:

palaeomagnetic and oxygen isotope
records from ODP Site 983

By J. E. T. Channell1 a nd H. F. Kleiven2

1Department of Geological Sciences, University of Florida,
PO Box 112120, Gainesville, FL 32611-2120, USA

2Department of Geology, University of Bergen, N-5007 Bergen, Norway

We have measured relative geomagnetic palaeointensity proxies, palaeomagnetic di-
rections, and 18O for the 700{1100 ka interval from ODP Site 983 (Gardar Drift,
North Atlantic), where mean sedimentation rates are ca. 13 cm kyr 1. The age model
was generated by matching the benthic 18O data to the Ice Volume Model and con-
­ rmed by tuning the precessional components of both signals. For the Matuyama{
Brunhes boundary (MBB) and the boundaries of the Jaramillo Subchronozone, the
duration of the polarity reversal process, de­ ned by virtual geomagnetic polar lati-
tudes of less than 45 , is ca. 5 kyr. Whereas the generally accepted astrochronological
estimates for the boundaries of the Jaramillo Subchronozone lie within the polarity
transitions as recorded at Site 983, the astrochronological age for the Matuyama{
Brunhes polarity transition (780 ka) is ca. 5 kyr older than the onset of this tran-
sition at Site 983 (775 ka). The polarity reversals lie within palaeointensity lows,
with abrupt recovery of palaeointensity post reversal. There is no progressive (`saw-
tooth’) decrease in palaeointensity within the Jaramillo Subchronozone or between
the top of the Jaramillo and the MBB, but rather, within polarity chrons, several
short intervals of low palaeointensity which sometimes coincide with high-amplitude
secular variation. Orbital (100 and 41 kyr) periods are present in the palaeointensity
record. As they are not obviously attributable to climate/lithology in these records,
they may be a feature of the geomagnetic ­ eld itself.

Keywords: geomagnetic secular variation; geomagnetic palaeointensity;
Matuyama{Brunhes boundary; Jaramillo Subchron; ODP Site 983; Iceland Basin

1. Introduction

Ocean Drilling Program (ODP) Site 983 (60.40 N, 336.36 E, 1983 m water depth),
located close to the crest of the Gardar Drift south of Iceland (­ gure 1), was drilled
in late July 1995. The three holes drilled at the site provided a complete composite
section to the base of the Olduvai Subchronozone (Shipboard Scienti­ c Party 1996).
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Deposition in the Gardar Drift has been driven by thermohaline circulation associ-
ated with Norwegian Sea Over®ow Water (NSOW) spilling over the Iceland{Scotland
Ridge. Accumulation rates have been enhanced by horizontal advection of ­ ne mate-
rial suspended in the nepheloid layer (Wold 1994; McCave & Tucholke 1986). The
Gardar Drift accumulated throughout the Pleistocene at rates of 5{20 cm kyr 1,
and provides one of the most detailed Pleistocene climatic records retrieved from
the North Atlantic. The composite section was generated shipboard using magnetic
susceptibility, GRAPE density and re®ectance data from the measurement systems
track (MST) to correlate the three holes and splice together an optimal (complete
and undisturbed) record of the sedimentary sequence (see Hagelberg et al . (1992) for
review of methods). A preliminary magnetic polarity stratigraphy was generated on
the `archive’ halves of core sections from each hole, using the shipboard pass-through
magnetometer (Shipboard Scienti­ c Party 1996) after demagnetization at a single
peak alternating ­ eld (usually 25 mT). The high rate of core recovery and the need
to avoid processing bottlenecks necessitated this abbreviated demagnetization treat-
ment. Subsequent shorebased treatment of 7 cm3 discrete samples, collected ship-
board in plastic cubes, served to ground-truth the shipboard magnetic stratigraphy
(Channell & Lehman 1999).

Here we report the magnetic properties and 18O of the 700{1100 ka interval at
Site 983. The objective is to place the palaeomagnetic directional and palaeointensity
records on a ­ rm isotopic age model in order to document the behaviour of the
geomagnetic ­ eld during the 400 kyr interval which includes the Matuyama{Brunhes
boundary (MBB) and the Jaramillo Subchron.

2. Oxygen isotope stratigraphy

The interval from 700 to 1200 ka was sampled continuously (nominally at 2 cm inter-
vals) for stable isotopic analyses of benthic and planktic foraminifera. The benthic
foraminiferal isotopic analyses were performed on the taxon Cibicidoides, principally
made up of C. wuellerstor¯ . The planktic foraminiferal isotopic analyses were per-
formed on Neogloboquadrina pachyderma (sinistral). Both species were selected from
the >150 m size fraction. The abundance of N. pachyderma (sinistral) allowed the
planktic record to be acquired at a 2{5 cm (ca. 500 year) resolution, whereas the spac-
ing of the benthic 18O is 10 cm or greater due to the relative scarcity of Cibicidoides
spp.

Stable isotope measurements of N. pachyderma (s.) specimens were made at the
University of Bergen on a Finnigan MAT251 coupled to an automated carbonate
preparation device, whereas the isotope measurements of Cibicidoides spp. were car-
ried out with a VG Isogas PRISM mass spectrometer at the University of Florida. A
small number of benthic stable isotope measurements were made at Scripps Institu-
tion of Oceanography on a Finnigan MAT252 and at the University of Cambridge on
a VG Isogas PRISM. Isotope data from all these laboratories were calibrated using
the NIST (NBS) 19 standard, and values are reported relative to PDB.

Oxygen isotopic stages 18{35 can easily be identi­ ed in the Site 983 benthic record
by matching to other deep-sea sediment 18O records (­ gure 2). Orbital variability in

18O is clearly present in the Site 983 record, indicating that Milankovitch forced ice-
volume changes are controlling the large-scale ®uctuations. Mean sedimentation rates
at Site 983 are three times higher than at Site 677 (13 cm kyr 1 versus 4 cm kyr 1).
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Figure 1. Map showing the location of ODP Site 983 at 60 240 N, 23 380 S and 1983 m water
depth. Site 983 is located near the head of the Gardar Drift which extends to the south-southwest,
following the path of deep over° ow currents (Norwegian Sea Over° ow Water, NSOW, as shown
by arrows) from the Iceland{Faeroe Ridge. Dashed line shows crest of Gardar Drift. Map after
Manley & Caress (1994) and McCave et al . (1980). Bathymetry in metres.

When compared with other records (­ gure 2), many additional isotope events indi-
cating sub-orbital variability are well de­ ned in the Site 983 record.

Within isotopic stage 18, we observe supplementary peaks both in the planktic and
benthic records (­ gure 3a) which have previously been observed only in the planktic
record of core MD900963 (­ gure 2), where they were interpreted to be related to
precession (Bassinot et al . 1994). The stage 19{18 transition displays a succession of
light 18O peaks superimposed on the trend towards glacial values. These parallel,
sub-orbital oscillations of the planktic and benthic records imply that the isotopic
signal was rapidly transferred from surface water to depth; indicating that surface
and deep waters were strongly coupled, perhaps as a result of rapid waxing and
waning of ice sheets in the near surroundings accompanied by glacial meltwater
®uxes. Similar shorter-period ®uctuations occur in the stage 21{20 transition, and
there are also excursions in 18O near the stage 25{24, 31{30 and 35{34 transitions.

Isotope stage 21 stands out as an interglacial abruptly interrupted by cool periods
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Figure 2. Benthic 1 8 O records for isotopic stages 18{35 (700{1200 ka): Ocean Drilling Program
Site 983 (this paper), ODP Site 677 (Shackleton et al . 1990), ODP Site 607 (Ruddiman et
al . 1989), ODP Site 929 (Bickert et al . 1997), ODP Site 659 (Tiedemann et al . 1994), and
the planktic 18 O record from MD900963 (Bassinot et al . 1994). Isotope stages are identi¯ed
according to Shackleton et al . (1990) and this paper.
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Figure 3. (a) Planktic (solid symbols) and benthic (open symbols) 18 O records from ODP Site
983 compared with the Ice Volume Model (thick line) calculated after Imbrie & Imbrie (1980).
(b) After initial ¯t of benthic 18 O record to the Ice Volume Model: output of a Gaussian ¯lter
centred on 20 kyr (0.05 kyr 1 ) with a 0.02 kyr 1 bandpass applied to the Ice Volume Model
(thick line), benthic 18 O record (thin line), and planktic 18 O record (dashed line). (c) After
tuning of the ¯ltered (20 kyr) records in ¯gure 2b: output of a Gaussian ¯lter centred on 20 kyr
(0.05 kyr 1 ) with a 0.02 kyr 1 bandpass applied to the Ice Volume Model (thick line) and the
benthic 18 O record (thin line).
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which de­ ne a precession-related tripartite stage 21. Isotope analyses from ODP Site
929 and MD900963 (­ gure 2) also suggest a partition of stage 21, but the Site 983
record exhibits signi­ cantly greater amplitude (1{0.5 %% ) and di¬ers from other deep
sea records, which generally show stage 21 as a warm and stable period. Also note-
worthy is the interval between stages 26 and 30, where signi­ cant millennial scale
variability is superimposed upon ­ ve light benthic 18O peaks (more than 1 %% ampli-
tude), attributed to precession-related forcing. Such instability, with pacing indistin-
guishable from that of the last glacial cycle, appears to characterize all observed
climate states during the Mid-Pleistocene interval, suggesting that sub-orbital vari-
ability has been a fundamental part of the climate system in the North Atlantic
region. This view is supported by recent results from the Early Pleistocene (Raymo
et al . 1998) and Late Pleistocene (McManus et al . 1999) in the North Atlantic region;
implying that climatic instability on sub-orbital time-scales existed during glacial and
interglacial intervals throughout the Pleistocene.

Notable di¬erences between the Site 983 records and the other records spanning
the Mid-Pleistocene interval (­ gure 2) can be attributed to the greater resolution
of the Site 983 record. Local climatic processes taking place in the sub-polar North
Atlantic are clearly superimposed on the global ice volume signal at Site 983. As
mentioned above, some of these sub-orbital events could result from local processes
transferring the highly negative 18O surface waters downward either through melt
water injection or brine formation (Vidal et al . 1998; Dokken & Jansen 1999).

3. Age model

Site 983 provides the most detailed Mid-Pleistocene 18O record retrieved from the
North Atlantic, and it allows us to compare in detail palaeoclimatic oscillations with
variations in orbital forcing and thus test the accuracy of the orbitally derived time-
scale of Shackleton et al . (1990). Figure 3a shows the planktic and benthic oxygen
isotope records from Site 983 together with an ice volume simulation using the model
of Imbrie & Imbrie (1980). We chose to use the latter as our tuning target, because
it has proved to be a powerful target for the Late Pleistocene (Martinson et al .
1987; Bassinot et al . 1994) as well as for the Early Pleistocene (Shackleton et al .
1990). This model assumes that the rate of climate response (growth or decay of
ice sheets) is proportional to the magnitude of summer insolation forcing at 65 N.
We constructed this target curve (­ gure 3a) using the 65 N July insolation curve of
Berger & Loutre (1991).

Our procedure was ­ rstly to match the benthic 18O record from Site 983 to
the target using linear interpolation between tie points (­ gure 3a). This proce-
dure was fairly straightforward because the precession-related oscillations are well
expressed in the 18O records from Site 983. When assigning the tie points, we
gave the glacial{interglacial transitions higher priority than the centres of glacial or
interglacial intervals. We assumed constant sedimentation rates between tie points,
resulting in a change in sedimentation rate more or less abruptly at these control
points (­ gure 4). This assumption may be realistic when the tie points correspond
to glacial{interglacial transitions, when environmental changes might be expected
to e¬ect the sedimentation rates. Moreover, assigning tie points at high-amplitude
transitions is probably more accurate than the designation of any particular peak or
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Figure 4. Age{depth map and interval sedimentation rates for the composite section at ODP
Site 983. The thin line connecting open circles indicates interval sedimentation rates after initial
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sedimentation rates after ¯nal tuning using the 20 kyr ¯lter outputs (see text). The age{depth
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Table 1.

metres composite depth age (ka)

85.58 722

87.56 753

90.18 773

93.25 790

97.4 817

102.89 865

104.59 875

106.74 907

109.29 930

112.54 957

116.65 980

119.6 1001

124.06 1031

133.18 1079

135.75 1094

139.25 1117

140.55 1139

141.67 1152

trough in intervals displaying considerable high-frequency, low-amplitude variability.
Tie points for this initial age model are given in table 1.

Down to stage 22, the benthic 18O record and the ice volume curve are very
similar, and a good match can be achieved interpreting stage 18 as containing two
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precession cycles and stage 21 as containing three precession cycles. When the extra
peak in stage 23 is tuned to a precession oscillation and the double peaks of stage
29 are interpreted to be part of one precession cycle, the tuning down to stage 29 is
a fairly obvious. Once the stage 29 is tuned, however, we need to assign a precession
cycle to the transition between stages 29 and 30 in order keep pace with the Ice
Volume Model. There is some ambiguity in this interval in the benthic 18O record,
but the planktic 18O record can be matched with con­ dence to the Ice Volume
Model. To respect the number of precession-related peaks in the Ice Volume Model,
we assigned two precession cycles to the major 18O peak found in stage 31, and
tuned stage 33 to the low ice volume peak at 1120 ka. As our isotope records do
not extend beyond the peak of isotope stage 35, it was di¯ cult to pick an end point
for our tuning procedure. But, the close correlation between Site 983 and Site 677
(­ gure 2) (the latter also tuned to the Ice Volume Model) allowed this task to be
completed, and we thus conclude that our record spans the time-interval from ca. 710
to 1170 ka.

This ­ rst step was followed by a ­ ne-tuning of the extracted precession components
of the benthic 18O record, to the precession component of the Ice Volume Model.
The Ice Volume Model and the benthic (and planktic) 18O record were passed
through a Gaussian ­ lter centred on 20 kyr (0.05 kyr 1) with a 0.02 kyr 1 bandwidth
(­ gure 3b). The resulting match of ­ lter-outputs led to a slight adjustment of the
original match of the un­ ltered benthic 18O to the Ice Volume Model. The resulting
depth-age map (­ gure 4) indicates that sedimentation rates vary in a range from 5
to 22 cm kyr 1, tending to be lower during glacial intervals. The Ice Volume Model
and the ­ nal tuned benthic 18O record were then ­ ltered again (­ gure 3c), and the
match between the two ­ ltered records are in good agreement, suggesting that an
accurate tuning solution has been obtained.

4. Magnetic properties

Magnetic properties were largely determined from U-channel samples collected from
the archive halves of the composite section. U-channels have a 2 2 cm2 square
cross-section, are up to 1.5 m in length, with a clip-on lid constituting one of the
sides (Tauxe et al . 1983). Magnetic remanence of U-channels was measured at 1 cm
intervals using the 2G Enterprises small-access pass-through magnetometers at Gif-
sur-Yvette (France) and the University of Florida (see Weeks et al . 1993). The
response functions of the three orthogonal magnetometer pick-up coils yield e¬ec-
tive U-channel lengths in the sensing region of 4.2 cm for vertical and horizontal (X
and Y ) and 6.2 cm for the axial direction (Z). Hence, although measurements were
made at 1 cm intervals downcore, there is an inherent smoothing in the measure-
ment procedure. Volume magnetic susceptibility ( ) was measured on U-channels at
1 cm intervals using a 45 mm diameter loop. Natural remanent magnetization (NRM)
was ­ rst measured in conjunction with stepwise alternating ­ eld (AF) demagneti-
zation. Anhysteretic remanence (ARM) and then isothermal remanence (IRM) were
imposed on the samples, and these remanences were progressively AF demagnetized.
The ARM was acquired in a 100 mT alternating ­ eld with a 0.05 mT bias DC ­ eld,
and the IRM was acquired in a 500 mT DC ­ eld. ARM and IRM values were used
to normalize the NRM for variations in concentration of remanence carrying grains,
and hence generate the palaeointensity proxies.
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Figure 5. Orthogonal projection of alternating ¯eld demagnetization data for samples from
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Orthogonal projections of AF demagnetization data indicate that the characteristic
magnetization component is isolated at peak ­ elds of 20{25 mT after removal of low
coercivity component attributed to the drilling process (­ gure 5). About 10% of the
remanence remain after demagnetization in peak ­ elds of 70 mT and the median
destructive ­ eld (20{30 mT) is consistent with magnetite as the principal remanence
carrier. The plot of anhysteretic susceptibility against susceptibility (­ gure 6a) can
be used to assess the uniformity in grain size of magnetite. The reasonably tight
grouping along a line emanating from the origin of the plot (­ gure 6a) is consistent
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with fairly uniform magnetite grain size in the 5{10 m range (King et al . 1983).
Hysteresis ratios lie in the pseudo-single domain (PSD) ­ eld (­ gure 6b) according to
Day et al . (1977).

Volume magnetic susceptibility measured at 1 cm intervals along U-channel sam-
ples varies by a factor of about 5 (­ gure 7). The prominent warm isotopic stages (19,
21, 25 and 31) have relatively low susceptibility, due partly to dilution by calcium
carbonate. IRM and ARM also vary by a factor of about 5, with a less pronounced
correlation with the 18O record (­ gure 7). The magnetite grain size sensitive param-
eter ARM/ (­ gure 7) varies in a narrow range (as expected from ­ gure 6a) indicat-
ing no pronounced variations in magnetite grain size. The Brunhes Chronozone at
Site 983 has very similar magnetic properties (see Channell et al . 1997, 1998) to those
described here. It appears that the Brunhes and Late Matuyama Chronozones at Site
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983 are characterized by rather uniform magnetite grain size in the few micrometres
(less than 10 m) grain size range. Channell et al . (1998) used the thermal demagne-
tization of IRM to demonstrate the low levels of haematite in the Brunhes Chron at
Site 983. The optimal conditions for palaeointensity determinations (see King et al .
1983; Tauxe 1993) are that ­ ne-grained magnetite be the exclusive remanence carrier
and that concentrations of these grains vary by no more than a factor of 10. These
conditions appear to be satis­ ed in the Brunhes and late Matuyama chronozones at
Site 983.

5. Magnetization component directions

The magnetic overprint attributed to the drilling process is removed at peak alter-
nating ­ elds of 20{25 mT (­ gure 5). The origin of this secondary component is not
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well understood. It is probably a viscous remanence (VRM) produced by magnetic
­ elds within the drill string, possibly augmented by some sort of stirred remanence
(StRM) produced by drilling disturbance. As mentioned above, archive halves of the
composite section were demagnetized at peak ­ elds of 25 mT to produce the ship-
board polarity stratigraphy. In the stratigraphic interval discussed here, the NRMs of
all U-channels collected from the archive halves of the composite section were step-
wise demagnetized in peak ­ elds of 25, 30, 35, 40, 45 and 60 mT. Further demag-
netization steps were carried out for individual U-channels. In order to compute
the characteristic magnetization component, the standard three-dimensional least-
squares line-­ tting routine (Kirschvink 1980) was applied each 1 cm downcore to the
25{60 mT demagnetization interval. The maximum angular deviation values are gen-
erally less than 10 (­ gure 8) indicating that the components are well de­ ned in this
demagnetization interval. The declinations and inclinations of the characteristic mag-
netization component indicate that the interval comprises the base of the Brunhes
Chronozone to just below the Jaramillo Subchronozone (­ gure 8). Several intervals of
high-amplitude secular variation are apparent in the top of the Matuyama Chrono-
zone and within the Jaramillo Subchronozone. The mean inclination (74 ) coincides
with the expected mean inclination at the sampling site.
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range.

6. Palaeointensity estimates

Palaeointensity proxies are constructed by normalizing the NRM intensity by a
parameter (such as , ARM or IRM) to compensate for variations in the concen-
tration of remanence carrying grains. The chosen normalizer should activate the
same grain population that carries the NRM. Susceptibility ( ) is sensitive to large
multidomain (MD) grains and small (superparamagnetic, SP) grains which are either
not important remanence carriers (in the case of MD grains) or not able to carry
remanence (in the case of SP grains). ARM and IRM activate remanence carrying
­ ne-grained magnetite. The mean grain size of the population of magnetite grains
activated by IRM might be expected to be larger than for grains activated by ARM.

In ­ gure 9, we plot NRM/ , NRM/ARM and NRM/IRM for ­ ve demagnetiza-
tion steps in the 25{45 mT range. Note that the value of the ratio is determined for
a particular peak demagnetization ­ eld applied to NRM, and ARM or IRM. The
variability of normalized remanence is similar for each normalizer (­ gure 9). Sur-
prisingly, the NRM/ARM values are more variable than the NRM/ or NRM/IRM
values (­ gure 9). It appears that the NRM/ARM record is under normalized and
that the coercivity spectra of NRM and ARM are more dissimilar than the coercivity
spectra of NRM and IRM. For this reason, we chose NRM/IRM as the palaeointen-
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moment (VADM), and normalized remanence (paleointensity record) from ODP Hole 851D
(Meynadier et al . 1994). Bathymetry in metres.

sity proxy. The arithmetic mean of the ­ ve values of NRM/IRM (for the 25{45 mT
demagnetization range) provides the palaeointensity proxy.

Constable & Tauxe (1996) suggested a means of scaling sedimentary relative
palaeointensity records using the assumption that the axial dipole (g0

1) goes to zero
at the time of reversal and that ­ eld intensity at that time is due to the non-axial-
dipole ­ eld (NAD). They use an estimate of 7.5 T for the strength of the NAD, then
multiply the sedimentary palaeointensity record by a constant factor which sets the
average transitional palaeointensity to 7.5 T. The resulting scaled palaeointensity
record for Site 983 is shown in ­ gure 10. The average palaeointensity over the scaled
record is 47.5 T, which is comparable with the expected mean dipole ­ eld inten-
sity at the site latitude (54.2 T). The average virtual axial dipole moment (VADM)
over the record is 6:8 1022 A m2 with values falling to ca. 1 1022 A m2 at polarity
reversals (­ gure 10).

The MBB and the boundaries of the Jaramillo Subchronozone occur within palaeo-
intensity lows, as do several intervals of high-amplitude secular variation (­ gure 10).
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The palaeointensity low at about 793 ka that predates the directional change at
the MBB (­ gure 10) appears to be the same as the pre-reversal palaeointensity low
recorded in equatorial Paci­ c and North Atlantic cores (Kent & Schneider 1995; Hartl
& Tauxe 1996). Other palaeointensity records for the Late Matuyama Chron are from
the Paci­ c and Indian Oceans (Meynadier et al . 1994) and from Core K78030 from
the central equatorial Paci­ c (Laj et al . 1996; Verosub et al . 1996). All these records
are from piston cores with mean sedimentation rates of a few (1{3) cm kyr 1 in
contrast to mean sedimentation rates of ca. 13 cm kyr 1 in this interval at Site 983
(see ­ gure 4). Although the records of Meynadier et al . (1994) can be correlated
from the Indian Ocean to the Paci­ c Oceans (see also Valet & Meynadier 1998),
these records cannot be clearly correlated in detail to those from Core K78030, and
none of these low resolution palaeointensity records can be correlated in detail to Site
983. An example of these correlation problems is shown in ­ gure 10, where the record
from central equatorial Paci­ c ODP Hole 851D (Meynadier et al . 1994) is shown with
the Site 983 record. The progressive decrease in palaeointensity within the Jaramillo
Subchronozone in the Meynadier et al . (1994) record was contributing evidence to
the `sawtooth’ hypothesis of palaeointensity in which geomagnetic palaeointensity
was thought to decrease within polarity chrons until critically low values triggered
the polarity reversal process. The hypothesis continues to be the focus of debate,
however, records showing this progressive decay in palaeointensity can, according
to some authors, be explained by delayed remanence acquisition (see Mazaud 1996;
Kok & Tauxe 1996; Meynadier et al . 1998). Recently, Valet et al . (1999) have made
the case, based in absolute palaeointensity determinations from the Canary Islands,
that the interval between the top of the Jaramillo and the MBB is characterized by
an `overall tendency’ of the ­ eld to decrease. It is important to note that no clear
overall decay of palaeointensity is apparent within the Jaramillo Subchronozone or
between the Jaramillo Subchronozone and the MBB at Site 983 (­ gure 10).

7. Ages of polarity reversals

Since 1990, the ages of Late Miocene to Pleistocene polarity reversals have been
revised due to astrochronological estimates from Italian land sections (e.g. Hilgen
1991a; b), from ODP Site 677 (Shackleton et al . 1990) and from ODP Leg 138
(Shackleton et al . 1995). These new ages are systematically older than the previ-
ously accepted ages (e.g. Berggren et al . 1985), which followed the K{Ar chronology
of Mankinen & Dalrymple (1979). The generally accepted astrochronological ages for
the MBB and the boundaries of the Jaramillo Subchron (Shackleton et al . 1990) are
indicated in ­ gure 11 together with the Site 983 virtual geomagnetic polar (VGP)
latitudes placed on the 18O age model.

The duration of the polarity reversals, as determined by the length of time for
which the VGP latitudes are less than 45 , is ca. 5 kyr for each reversal (­ gure 11).
This estimate is comparable with the magnetic di¬usion time of the Earth’s inner
core, estimated to be ca. 3 kyr, and is consistent with the idea that di¬usion through
the inner core is necessary to stabilize the reversing ­ eld (see Gubbins 1999).

For the base of the Jaramillo Subchronozone, the Site 983 estimate (­ gure 11) is
consistent with the generally accepted astrochronological estimate (1070 ka) (Shack-
leton et al . 1990). Singer et al . (1999) gave 40Ar/39Ar ages from lavas recording
the Jaramillo Subchron in the Punaruu Valley, Tahiti. Their age for the base of
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Figure 11. Virtual geomagnetic polar (VGP) latitudes (open symbols) and benthic 18 O record
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of the Jaramillo Subchronozone. Bold lettering indicates isotopic stage numbers. Thick vertical
lines indicate the generally accepted astrochronological ages for these polarity chron boundaries
(Shackleton et al . 1990).

the Jaramillo Subchronozone (1053 6 ka) is midway between the earlier 40Ar/39Ar
determinations of Spell & MacDougall (1992) and Izett & Obradovich (1994). For
the top of the Jaramillo Subchronozone, the Site 983 estimate (­ gure 11) is again
close to the generally accepted astrochronological estimate (990 ka) (Shackleton et
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al . 1990). The 40Ar/39Ar age given by Singer et al . (1999) (986 5 ka) is consis-
tent with these estimates. The process of checking astrochronological age estimates
for reversal boundaries using 40Ar/39Ar methods is somewhat circular because the
best way of calibrating the 40Ar/39Ar standards is by matching the 40Ar/39Ar and
astrochronological estimates (see Renńe et al . 1994).

The age of onset of the Matuyama{Brunhes reversal at Site 983 (775 ka) and the
midpoint of the reversal (772.5 ka) (­ gure 11) are younger than the mean 40Ar/39Ar
age of 778:7 1:9 ka given by Singer & Pringle (1996). The apparent age for the MBB
from Site 983 is also younger than the generally accepted astrochronological estimate
(780 ka) (Shackleton et al . 1990), and the estimate (778:0 1:7 ka) by Tauxe et al .
(1996) based on 19 oxygen isotope/magnetic records combined with the 40Ar/39Ar
estimate of Singer & Pringle (1996). At Site 983, the MBB occurs at the young end
of the isotopic stage 19 (compare ­ gure 11 with ­ g. 3 of Tauxe et al . (1996)). The
sedimentary sections where the MBB ages have been determined by astrochronology
(e.g. ODP Sites 677 and DSDP Site 607) have lower sedimentation rates than Site
983. Note that ODP Site 677 does not have a polarity stratigraphy and the age
of reversals was deduced by correlation to DSDP Hole 552A and DSDP Site 607
(Shackleton et al . 1990). The younger apparent age of the MBB at Site 983 could be
attributed to the sedimentary record of polarity reversals being shifted down-section
by a ­ nite lock-in depth for magnetic remanence acquisition. The resulting time delay
of remanence acquisition might be greater for lower sedimentation rates, as the lock-
in depth would have greater temporal signi­ cance than in a higher sedimentation
rate sequence (such as Site 983). This possible explanation for the relatively young
age for the MBB at Site 983 is inconsistent with the ­ ndings of Tauxe et al . (1996),
who concluded that the isotope-based (astrochronological) ages for the MBB do not
show any systematic variation with sedimentation rate, implying shallow (few cm)
magnetization lock-in depths.

For the Brunhes Chron (0{725 ka interval) at Site 983, Channell et al . (1998)
documented ca. 100 kyr and ca. 41 kyr power in the NRM/IRM record and suggested
that the 41 kyr power may be due to the geomagnetic ­ eld itself (see also Yamazaki
1999). The rationale for this conclusion was that no signi­ cant 41 kyr power was seen
in the magnetic concentration parameters such as IRM, which would be expected to
be sensitive to lithologic/climatic variability. In these Brunhes records, 100 kyr power
was found to be ubiquitous in all magnetic concentration parameters (including IRM)
re®ecting the strong in®uence of the ca. 100 kyr orbital period on climate/lithology
during this time.

Spectral analysis of the mean NRM/IRM record for the 700{1100 ka interval from
Site 983 indicates power peaks at periods close to 41 kyr (0.0244 kyr 1) and just
greater than 100 kyr (0.01 kyr 1) (­ gure 12). The power spectrum for IRM features a
broad power peak close to 41 kyr. It is interesting to note the absence of 100 kyr power
in IRM, presumably re®ecting the diminished in®uence of this period on climate at
this time (in the so-called 41 kyr world) relative to its strong in®uence in the Brunhes.
The squared coherency between NRM/IRM and IRM is not signi­ cant at periods
greater than ca. 12 kyr (­ gure 12) implying that the 41 kyr power in NRM/IRM is
not be due to climatic in®uence on the palaeointensity record (through IRM) but
rather to the geomagnetic ­ eld itself. The ca. 100 kyr power in NRM/IRM is also,
in the records documented here, not easily attributed to climate/lithology as it is
absent in IRM, and therefore, may also be attributed to the geomagnetic ­ eld.
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